
Chapter 1. Introduction

Section 1. Overview

1. Applications of numerical methods.(Burden & Faires, 1.1)
As the development of the modern computer technology, numerical approximations

are widely used in today's real world problems. In general, when the analytic form of
the solution to a problem is not known, or the analytic form is too complicated to be
usable, then the numerical approximation is used to �nd an approximate solution to the
problem. The following are some examples of numerical approximations:

� Using Taylor's theorem we have

cosx = 1� 1

2
x2 +

1

6
x3 sin �

where � is some number between 0 and x. When x = 0:01, this becomes

cos(0:01) = 1� 1

2
(0:01)2 +

1

6
(0:01)3 sin � = 0:99995 +

10�6

6
sin �

The approximation to cos(0:01) is 0:99995, the truncation error is

10�6

6
sin � = 0:1�6� 10�6 sin �

Therefore,

j cos(0:01)� 0:99995j = 0:1�6� 10�6 sin � � 0:1�6� 10�6

� In many application problems, it is impossible to �nd the analytic form of the
integral Z b

a
f(x)dx

and in some cases, we do not even know the expression of f(x), but only know the
function values for any given x. For this kind of integrals, numerical integration is
necessary. A simple approximation formula is

Z b

a
f(x)dx � b� a

n

nX
i=1

f(xi)

If f(x) is integrable, then this approximation will converge to the integral, i.e.

lim
n!1

b� a

n

nX
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f(xi) =
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f(x)dx



� The solution to the following initial boundary value problem

@u

@t
=

@2u

@x2
x > 0; t > 0;

u(0; t) = 0 t > 0;

u(x; 0) = f(x) x > 0

is given by

u(x; t) =
2

�

Z
1

0

Z
1

0
f(�)e�!

2t sin(!�) sin(!x)d�d!

If the function f(x) is not simple, then the right hand side can not be integrated.
For example,

f(x) = e�x
2

sinx2

If the function value u(x; t) is needed for given x and t, then numerical integration
must be used to evaluate the integral.

� In general, when the equation is nonlinear, it is di�cult to �nd the analytic ex-
pression of the solution. For example, consider the initial value problem

@u

@t
=

@2u

@x2
+ eu �1 < x <1; t > 0;

u(x; 0) = f(x)

If the value u(1; 0:01) is needed, we can use numerical di�erentiation to approxi-
mate the derivatives,

@u

@t
� u(x; t+�t)� u(x; t)

�t
@2u

@x2
� u(x+�x; t)� 2u(x; t) + u(x��x; t)

�x2

Then we have the approximate equation

u(x; t+�t)� u(x; t)

�t
� u(x+�x; t)� 2u(x; t) + u(x��x; t)

�x2
+ eu(x;t)

Therefore,

u(x; t+�t) � (1� 2�)u(x; t) + �(u(x+�x; t) + u(x��x; t)) + �teu(x;t)

where � = �t=(�x)2. Let x = 1, t = 0, �t = 0:01, �x = 0:2, and use the initial
condition, we can obtain an approximation value of u(1; 0:01).

� In solving the real world problems, very often the last step is to �nd the solution
of a linear system of equations,

Ax = b

When the matrix A is large, it is usually impossible to �nd the exact solution
x. Therefore, numerical methods are used to �nd an approximate solution to the
system.
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The following are some examples of the applications of the numerical methods:

� Design of aircraft, bridges, and skyscrapers

� Whether forecast

� Design of electronic circuits

� Signal and image processing

� Pricing of options and futures

� Inventory and scheduling optimization

2. Computational errors. (Burden & Faires, 1.2)
As we have seen in the previous examples, when an numerical approximation is

applied, we introduce errors. There are two kinds of errors.

Truncation error. Consider the Taylor's theorem,

f(x) = Pn(x) +Rn(x)

where

Pn(x) = f(x0) + f 0(x0)(x� x0) +
f 00(x0)

2!
(x� x0)

2 + � � �+ f (n)(x0)

n!
(x� x0)

n

Rn(x) =
f (n+1)(�)

(n+ 1)!
(x� x0)

(n+1)

If we use Pn(x) to approximate f(x), then the error is Rn(x). This error is called the
truncation error.

Round-o� error. In the numerical computation by computers, the numbers are rep-
resented in the decimal oating-point form,

�0:d1d2 � � � dk � 10n; 1 � d1 � 9; 0 � di � 9; i = 2; � � � ; k

Numbers of this form are called k-digit decimal machine numbers. A single precision
number has 7 to 8 digits, and a double precision number has 15 to 16 digits. Any positive
real number has the form

y = 0:d1d2 � � � dkdk+1dk+2 � � � � 10n:

There are two ways to approximate y in computers. One is called chopping, we simply
chop o� the digits dk+1dk+2 � � �. This produces the oating-point form

fl(y) = 0:d1d2 � � � dk � 10n:
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The other one is called rounding, we add 5 � 10n�(k+1) to y and then chop the result
to obtain

fl(y) = 0:�1�2 � � � �k � 10n;

or equivalently, if dk+1 � 5, we add 1 to dk to obtain fl(y), i.e., we round up. If dk+1 < 5,
we just chop o� all but the �rst k digits, so we round down.

To measure the errors, we have the following two ways.

Absolute and relative error. If p� is an approximation to p, then jp � p�j is called
the absolute error, and jp� p�j=jpj is called the relative error.

Signi�cant digits. The number p� is said to approximate p to t signi�cant digits if t
is the largest nonnegative integer for which

jp� p�j
jpj � 5� 10�t

The following table shows that p� approximate p to 4 signi�cant digits.

p 0.1 0.5 100 1000 5000 9990 10000
max jp� p�j 0.00005 0.00025 0.05 0.5 2.5 4.995 5

One of the most common error producing calculations involves the cancelation of
signi�cant digits due to subtraction of nearly equal numbers. Let

fl(x) = 0:d1d2 � � � dp�p+1�p+2 � � ��k � 10n

fl(y) = 0:d1d2 � � � dp�p+1�p+2 � � � �k � 10n

If x > y, then
fl(fl(x)� fl(y)) = 0:�p+1�p+2 � � ��k � 10n�p

where
0:�p+1�p+2 � � ��k = 0:�p+1�p+2 � � ��k � 0:�p+1�p+2 � � � �k

The oating number used to represent z = x � y has at most k � p signi�cant digits,
the last p digits are random numbers. Thus, an error � is introduced in the calculation.
If x� y is further divided by a small number or multiplied by a large number, then the
error will be enlarged. If � = 10�n with n > 0, then

z

�
� fl

 
fl(z)

fl(�)

!
= (z + �)� 10n

Thus, the absolute error is j�j � 10n, i.e., the original error � is enlarged by a factor 10n.

Example. The two roots of ax2 + bx+ c = 0 are given by

x1 =
�b+p

b2 � 4ac

2a
; x2 =

�b�p
b2 � 4ac

2a
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Consider the equation x2 + 62:10x+ 1 = 0. The two roots are

x1 = �0:01610723; x2 = �62:08390

In this equation, b2 is much larger than 4ac, so the numerator of x1 is a subtraction of
two nearly equal numbers. Use 4-digit rounding we get

fl(x1) =
�62:10 + 62:06

2:000
= �0:02000

which is a poor approximation to x1 with the large relative error

j � 0:01611 + 0:02000j
j � 0:01611j � 2:4� 10�1

To improve the accuracy of the calculation, we change the formula by rationalizing

the numerator,

x1 =
�b+p

b2 � 4ac

2a

 �b�p
b2 � 4ac

�b�p
b2 � 4ac

!
=

�2c
b+

p
b2 � 4ac

Using this we get

fl(x1) =
�2:000

62:10 + 62:06
=
�2:000
124:2

= �0:01610

which has the small relative error 6:2� 10�4.

Example. Evaluate f(x) = x3�6:1x2+3:2x+1:5 for x = 4:71. Using 3 digit arithmetic
we have,

x x2 x3 6:1x2 3:2x
Exact 4.71 22.1841 104.487111 135.32301 15.072
Chopping 4.71 22.1 104. 134. 15.0
Rounding 4.71 22.2 105. 135. 15.1

The exact value of f(4:71) is

f(4:71) = 104:487111� 135:32301 + 15:072 + 1:5 = �14:263899

Using chopping we have

f(4:71) = 104:� 134:+ 15:0 + 1:5 = �13:5

The relative error is �����14:263899 + 13:5

�14:263899
���� � 0:05
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Using rounding we have

f(4:71) = 105:� 135:+ 15:1 + 1:5 = �13:4
The relative error is �����14:263899 + 13:4

�14:263899
���� � 0:06

In both cases, large relative errors occur. The reason is that large numbers are produced
due to the exponents, then subtraction of nearly equal numbers causes the loss of sig-
ni�cant digits. To improve the calculation, we change the polynomial to the following
nested form,

f(x) = x3 � 6:1x2 + 3:2x+ 1:5 = ((x� 6:1)x+ 3:2)x+ 1:5

Then using chopping we have

f(4:71) = ((4:71� 6:1)4:71 + 3:2)4:71 + 1:5 = �14:2
The relative error is �����14:263899 + 14:2

�14:263899
���� � 0:0045

Using rounding we have

f(4:71) = ((4:71� 6:1)4:71 + 3:2)4:71 + 1:5 = �14:3
The relative error is �����14:263899 + 14:3

�14:263899
���� � 0:0025

3. Convergence and stability.(Burden & Faires, 1.3)
Numerical methods usually involve approximation sequences, iteration techniques,

etc. The convergence of the numerical methods is a very important concept in approxi-
mations. Also, the rate of convergence is a measurement to di�erent algorithms.

Convergence. Suppose f�ng1n=1 is a sequence known to converge to zero, and f�ng1n=1
converges to a number �. If a positive constant K exists with

j�n � �j � Kj�nj for large n

then we say that f�ng1n=1 converges to � with the rate of convergence O(�n) (big oh of
�n), and written as

�n = � +O(�n)

In most cases, �n = 1=np (p > 0), so we have

�n = � +O
�
1

np

�
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Similarly, if a function F (h) satis�es

jF (h)� Lj � Khp for small positive h

we write
F (h) = L+O(hp)

In general, a computer algorithm involves many steps of computation. Suppose, for
example, a error is introduced in the �rst step of computation. As we have seen in the
previous examples, this error may be enlarged in the subsequent computations, and the
�nal result may be totally wrong dut to the large error. The stability concept is related
to this issue.

Stability. If small changes in the initial data produce correspondingly small changes in
the �nal results, then we say that the algorithm is stable. Otherwise, the algorithm is
said unstable.

Example. The solution of the recursive equation

pn =
10

3
pn�1 � pn�2; n = 2; 3; � � �

is

pn = c1

�
1

3

�n

+ c23
n

If p0 = 1 and p1 = 1=3, we have c1 = 1 and c2 = 0, then pn = (1=3)n. If we use 5 digit
rounding to compute pn, then the computed sequence p̂0 = 1:0000, p̂1 = 0:33333, which
corresponding to ĉ1 = 1:0000 and ĉ2 = �0:12500� 10�5, and

p̂n = 1:0000
�
1

3

�n

� 0:12500� 10�5(3n)

The round-o� error is
pn � p̂n = 0:12500� 10�5(3n)

This error grows expontially, so the algorithm is unstable.

Example. The solution of the recursive equation

pn =
3

4
pn�1 � 1

8
pn�2; n = 2; 3; � � �

is

pn = c1

�
1

2

�n

+ c2

�
1

4

�n

If the computed values for c1 and c2 are ĉ1 and ĉ2, due to round-o� errors, then we have

p̂n = ĉ1

�
1

2

�n

+ ĉ2

�
1

4

�n
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Thus, the round-o� error in computing pn is

jpn � p̂nj =
����(c1 � ĉ1)

�
1

2

�n

+ (c2 � ĉ2)
�
1

4

�n����
� jc1 � ĉ1j

�
1

2

�n

+ jc2 � ĉ2j
�
1

4

�n

� jc1 � ĉ1j1
4
+ jc2 � ĉ2j 1

16

Small changes in the initial errors jc1 � ĉ1j and jc2 � ĉ2j will result in a small change in
jpn � p̂nj, the algorithm is stable.

Relation between convergence and stability. The concept of convergence is about
the theoretical errors (truncation errors) between the true value and the exact value of
an algorithm. The concept of stability is about the computional errors (round-o� error)
between the true value of an algorithm and the computated value from the algorithm.
Take the previous example, consider the algorithm

pn =
10

3
pn�1 � pn�2; n = 2; 3; � � �

When p0 = 1 and p1 = 1=3, we have pn = (1=3)n. Clearly,

lim
n!1

pn = 0

However, for the computed value

lim
n!1

p̂n =1
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