
Chapter 2. Solution of a Single Nonlinear Equation

Section 1. Iteration Methods

1. Bisection method.(Burden & Faires, 2.1)
Consider the nonlinear equation

f(x) = 0; a � x � b

The bisection method is the most simplest method to �nd a root of f(x). Suppose f(x) is
a continuous function on [a; b], with f(a) and f(b) of opposite sign. By the Intermediate
Value Theorem, there exists a number p 2 (a; b) with f(p) = 0. For simplicity, we
assume that the root p is unique. The algorithm of the bisection method is as follows,

� Let a1 = a and b1 = b, and let p1 be the midpoint of [a1; b1],

p1 = a1 +
b1 � a1

2
=

a1 + b1
2

� If f(p1) = 0, then p = p1. Otherwise, if f(p1) 6= 0, then f(p1) has the same sign
as either f(a1) or f(b1). When f(p1) and f(a1) has the same sign, p 2 (p1; b1),
and we set a2 = p1, and b2 = b1. When f(p1) and f(a1) has the opposite sign,
p 2 (a1; p1), and we set a2 = a1, and b2 = p1. We then set p2 be the midpoint of
[a2; b2].

� This procedure is continued until the satisfactory approximation pn is obtained.

Theorem 2.1. (convergence of bisection method) Suppose that f 2 C[a; b] and
f(a) � f(b) < 0. The bisection method generates a sequence fpng

1

n=1 approximating a
zero p of f with

jpn � pj �
b� a

2n
; n � 1

Proof. For each n � 1, we have

bn � an =
1

2n�1
and p 2 (an; bn)

Since pn = (an + bn)=2, then

jpn � pj �
bn � an

2
=

b� a

2n

Using this theorem we can determine the number of iterations n for a given accuracy
�. Set

jpn � pj �
b� a

2n
� �; n � 1



or

2n �
b� a

�

Take logarithms we get
n log10 2 � log10(b� a)� log10 �

or

n �
log10(b� a)� log10 �

log10 2

For example, if a = 1, b = 2, and � = 10�3, we have

n �
log10 1� log10 10

�3

log10 2
�

3

0:30103
� 9:97

2. Fixed point iteration.(Burden & Faires, 2.2)
A number p is called a �xed point for a given function g if g(p) = p.

Theorem 2.2.

a. If g 2 C[a; b] and g(x) 2 [a; b] for all x 2 [a; b], then g has a �xed point in [a; b].

b. If, in addition, g0(x) exists on (a; b) and a positive constant k < 1 exists with

jg0(x)j � k 8x 2 (a; b)

then the �xed point in [a; b] is unique.

Proof.

a. If g(a) = a or g(b) = b, then g has a �xed point at an endpoint. If not, then g(a) > a
and g(b) < b. The function h(x) = g(x)� x is continuous on [a; b] with

h(a) = g(a)� a > 0 and h(b) = g(b)� b < 0

The Intermediate Value Theorem implies that there exists p 2 (a; b) such that
h(p) = 0, or g(p) = p.

b. If p and q, p 6= q, are both �xed points, then the Mean Value Theorem implies that
a number � exists between p and q with

g(p)� g(q)

p� q
= g0(�)

Thus,
jp� qj = jg(p)� g(q)j = jg0(�)j � kjp� qj < jp� qj

which is a contradiction.
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To approximate the �xed point p, we take an initial guess p0, and compute pn =
g(pn�1). The following theorem shows that the pn converges to p under some conditions.

Theorem 2.3. (�xed point iteration) Let g 2 C[a; b] be such that g(x) 2 [a; b], for
all x 2 [a; b]. Suppose, in addition, that g0 exists on (a; b) and that a constant 0 < k < 1
exists with

jg0(x)j � k 8x 2 (a; b)

Then, for any p0 2 [a; b], the sequence de�ned by

pn = g(pn�1); n � 1

converges to the unique �xed point p 2 [a; b].

Proof. Using the Mean Value Theorem we have

jpn � pj = jg(pn�1)� g(p)j = jg0(�n)jjpn � pj � kjpn�1 � pj

Applying this repeatedly we get

jpn � pj =� kjpn�1 � pj � k2jpn�2 � pj � � � � � knjp0 � pj

Therefore,
lim
n!1

jpn � pj = 0

Corollary 2.4. If g satis�es the hypotheses of Theorem 2.3, then the error is bounded
by

jpn � pj =� knmaxfp0 � a; b� p0g

and

jpn � pj =�
kn

1� k
jp1 � p0j n � 1

3. Newton's method.(Burden & Faires, 2.3)
Newton's is a very e�cient method for �nding the roots of f(x) = 0. Newton's

method can be derived by using Taylor's theorem. Suppose that f 2 C2[a; b]. Let
p0 2 [a; b] be an good approximation to the root p such that f 0(p0) 6= 0. Then we have

f(p) = f(p0) + (p� p0)f
0(p0) +

(p� p0)
2

2
f 00(�)

Dropping the second order term and using f(p) = 0 we �nd a new approximation to p,

p � p1 = p0 �
f(p0)

f 0(p0)

In general, we have the iteration algorithm,

pn = pn�1 �
f(pn�1)

f 0(pn�1)
for n � 1
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Theorem 2.5. (local convergence of Newton's method) Let f 2 C2[a; b], if
p 2 [a; b] is such that f(p) = 0 and f 0(p) 6= 0, then there exists a � > 0 such that
Newton's method converges for any initial approximation p0 2 [p� �; p+ �].

Proof. Let

g(x) = x�
f(x)

f 0(x)

then Newton's method is equivalent to the �xed point iteration pn = g(pn�1). Thus,
we only need to check the conditions in the convergence theorem for the �xed point
iteration. Take the derivative

g0(x) =
f(x)f 00(x)

[f 0(x)]2

Since g0(p) = 0, there exists a � > 0, such that

jg0(x)j � k < 1 8x 2 [p� �; p+ �]

Also, since

jg(x)� pj = jg(x)� g(p)j = jg0(�)jjx� pj � kjx� pj < jx� pj < �

g maps [p� �; p+ �] into [p� �; p+ �]. Therefore, from the convergence theorem for the
�xed point iteration, Newton's method converges to p for any p0 2 [p� �; p+ �].

Secant method. Newton's method is a very powerful method. However, in some
application problems, f 0(pn�1) is not easy to �nd. To avoid this di�culty, we use an
approximation to replace f 0(pn�1)

f 0(pn�1) �
f(pn�1)� f(pn�2)

pn�1 � pn�2

Then Newton's method is modi�ed to

pn = pn�1 �
f(pn�1)(pn�1 � pn�2)

f(pn�1)� f(pn�2)

This method is called the Secant Method.

Brent's method. Brent's method is a modi�cation of the secant method, which com-
bines the bisection method and the secant method. At each step, if the new approxima-
tion from the secant method is not inside the new subinterval, then the new approxima-
tion is replaced by the bisection point, and the new subinterval is chosen to guarantee
that the root is inside.
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Section 2. Convergence Analysis

Convergence order. If

lim
n!1

jpn+1 � pj

jpn � pj�
= �

for some constant �, then we say that the sequence fpng
1

n=0 converges to p of order �.
When � = 1 (� < 1), the sequence is linearly convergent. When � = 2, the sequence is
quadratically convergent.

Theorem 2.7. Let g 2 C[a; b] be such that g(x) 2 [a; b], for all x 2 [a; b]. Suppose, in
addition, that g0 is continuous on (a; b) and

jg0(x)j � k 8x 2 (a; b)

with k < 1. If g0(p) 6= 0, then for p0 2 [a; b], the sequence

pn = g(pn�1) 8n � 1

converges only linearly to the unique �xed point p 2 [a; b].

Proof. Since
pn+1 � p = g(pn)� g(p) = g0(�n)(pn � p)

then

lim
n!1

jpn+1 � pj

jpn � pj
= lim

n!1

jg0(�n)j = jg0(p)j

Theorem 2.8. Let p be a solution of the equation x = g(x). Suppose that g0(p) = 0 and
g00 is continuous with jg00(x)j < M on an open interval I containing p. Then there exists
a number � > 0 such that, for p0 2 [p� �; p+ �], the sequence de�ned by pn = g(pn�1),
n � 1, converges at least quadratically to p. Moreover, for su�ciently large value of n,

jpn+1 � pj <
M

2
jpn � pj2

Proof. Using Taylor expansion we have

g(x) = g(p) + g0(p)(x� p) +
g00(�)

2
(x� p)2

= p+
g00(�)

2
(x� p)2

Let x = pn we get

pn+1 = g(pn) = p+
g00(�n)

2
(pn � p)2
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or

pn+1 � p =
g00(�n)

2
(pn � p)2

Thus, we have

lim
n!1

jpn+1 � pj

jpn � pj2
=
jg00(p)j

2
<

M

2

For Newton's method,

g(x) = x�
f(x)

f 0(x)

It is easy to check that g0(p) = 0 and g00 is continuous with jg00(x)j < M . Thus, Newton's
method converges quadratically.

Section 3. Zeros of Polynomials

There are di�erent ways to �nd the zeros of polynomials, here we only introduce one
simple method, Bairstow's Method. Consider the polynomial

a0x
n + a1x

n�1 + a2x
n�2 + � � �+ an = 0 (1)

The idea is to �nd a quadratic factor of the form

x2 + ux+ v

where u and v are constants to be determined. Once this quadratic factor is obtained,
then the degree of the polynomial is reduced by 2, and we continue to �nd other quadratic
factors. In this way, we �nd all quadratic factors, and thus �nd all the roots. Let

a0x
n + a1x

n�1 + a2x
n�2 + � � �+ an =

(x2 + ux+ v)(b0x
n�2 + b1x

n�3 + b2x
n�4 + � � �+ bn�2) +R(x)

where
R(x) = rx+ s

To ensure that x2 + ux + v is a factor of the polynomial (1), the remainder R(x) must
be zero. Since r and s depend on u and v, we have

r(u; v) = 0

s(u; v) = 0

Suppose initial approximations u0 and v0 are given, let u1 = u0+�u0 and v1 = v0+�v0.
We require

r(u1; v1) = 0

s(u1; v1) = 0
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or,

r(u0 +�u0; v0 +�v0) = 0

s(u0 +�u0; v0 +�v0) = 0

Use Taylor's theorem we obtain

r(u0; v0) + �u0
@r(u0; v0)

@u
+�v0

@r(u0; v0)

@v
� 0

s(u0; v0) + �u0
@s(u0; v0)

@u
+�v0

@s(u0; v0)

@v
� 0

Solving this we obtain �u0 and �v0, and therefore we have u1 and v1. This procedure
is repeated until r and s are su�ciently small.
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