
Chapter 5. Linear Systems of Equations

Section 1. Gaussian Elimination

1. Gaussian Elimination (Burden & Faires, 6.1)
Consider the n� n liner system of equations,

a11x1 + a12x2 + � � �+ a1nxn = b1

a21x1 + a22x2 + � � �+ a2nxn = b2

� � � � � �

an1x1 + an2x2 + � � �+ annxn = bn

or in matrix form
Ax = b

where

A =

2
66664
a11 a12 � � � a1n
a21 a22 � � � a2n
...

...
...

...
an1 an2 � � � ann

3
77775 ; x =

2
66664
x1
x2
...
xn

3
77775 ; b =

2
66664
b1
b2
...
bn

3
77775

The augmented matrix for this system is

[A;b] =

2
66666664

a11 a12 � � � a1n
... b1

a21 a22 � � � a2n
... b2

...
...

...
...

...
...

an1 an2 � � � ann
... bn

3
77777775

It is well known that the following three row operations to [A;b] will not change the
solution of the system,

1. Interchange two rows.

2. Mutiply a row by a nonzero constant.

3. Mutiply a row by a nonzero constant and add to another row.

The Gaussian Elimination uses the three row operations to eliminate all the entries
below the diagonals column by column, and then the system can be solved by back



substitution. Let

~A(k) =

2
666666666666666664

a
(1)
11 a

(1)
12 a

(1)
13 � � � a

(1)
1;k�1 a

(1)
1k � � � a

(1)
1n

... a
(1)
1;n+1

0 a
(2)
22 a

(2)
23 � � � a

(2)
2;k�1 a

(2)
2k � � � a

(2)
2n

... a
(2)
2;n+1

...
. . . . . . . . .

...
... � � �

...
...

...
...

. . . . . . . . . a
(k�1)
k�1;k�1 a

(k�1)
k�1;k � � � a

(k�1)
k�1;n

... a
(k�1)
k�1;n+1

...
. . . . . . . . . 0 a

(k)
k;k � � � a

(k)
k;n

... a
(k)
k;n+1

...
. . . . . . . . .

...
... � � �

...
...

...

0 � � � � � � � � � 0 a
(k)
n;k � � � a(k)n;n

... a
(k)
n;n+1

3
777777777777777775

where ~A(1) = [A;b]. For k = 2; 3; � � � ; n,

a
(k)
ij =

8>>><
>>>:
a
(k�1)
ij ; i = 1; 2; � � � ; k � 1; j = 1; 2; � � � ; n+ 1
0; i = k; k + 1; � � � ; n; j = 1; 2; � � � ; k � 1

a
(k�1)
ij �

a
(k�1)
i;k�1

a
(k�1)
k�1;k�1

a
(k�1)
k�1;j ; i = k; k + 1; � � � ; n; j = k; k + 1; � � � ; n+ 1

~A(k) represents the equivalent linear system for which the columns 1; 2; � � � ; k � 1 below
the diagonals have been eliminated. The elements a

(k)
ii ; k = 1; 2 � � � ; n; i = 1; 2; � � � ; n,

on the diagonal are called the pivot elements. Clearly, the procedure will fail if a
(k)
kk = 0.

2. Operations count (Burden & Faires, 6.1)
To compare di�erent algorithms, the excution time on computers is a very important

factor. The excution time is di�erent for di�erent computers. Thus, we usually count
the basic operations required to be excuted. In most algorithms, the Multiplication,
Division, Addition and Subtraction are the main operations. Amount these, Multipli-
cation and Division require much more computer time than Addition and Subtraction.
For Gaussian Elimination, at the ith step, we have

Multiplication/Division (ith step):

(n� i) + (n� i)(n� i+ 1) = (n� i)(n� i+ 2)

Addition/Subtraction (ith step):

(n� i)(n� i+ 1)

Adding up we obtain the operations for elimination

Multiplication/Division:

n�1X
i=1

(n� i)(n� i+ 2) =
n�1X
i=1

(n2 � 2ni+ i2 + 2n� 2i)

=
2n3 + 3n2 � 5n

6

2



Addition/Subtraction:

n�1X
i=1

(n� i)(n� i+ 1) =
n�1X
i=1

(n2 � 2ni+ i2 + n� i)

=
n3 � n

3

For backward substitution we have

Multiplication/Division:

1 +
n�1X
i=1

(n� i+ 1) =
n2 + n

2

Addition/Subtraction:
n�1X
i=1

(n� i� 1 + 1) =
n2 � n

2

Thus, the total operation for solving the linear system is

Multiplication/Division (Total)

2n3 + 3n2 � 5n

6
+
n2 + n

2
=
n3

3
+ n2 �

n

3

Addition/Subtraction (Total)

n3 � n

3
+
n2 � n

2
=
n3

3
+
n2

2
�

5n

6

3. Pivoting (Burden & Faires, 6.2)

Partial pivoting. When the element a
(k)
kk is zero, a row interchange is needed. The-

oretically, the elimination procedure can continue if a
(k)
kk 6= 0. However, if a

(k)
kk is rel-

atively small, the elimination procedure can produce large round-o� error. Thus, row
interchanges are performed even when the pivit elements are not zero. To reduce the
round-o� error, we determine the smallest p � k such that

ja
(k)
pk j = max

k�i�n
ja

(k)
ik j

and then perform the row interchange of row k and row p. This technique is called
partial pivoting.

Scaled pivoting. Since any row can be multiplied by a nonzero constant, the partial
pivoting may not improve the performence for some problems. The better way is to
scale the rows uniformly, and then select the pivoting element. Let

si = max
1�j�n

jaijj

3



and then we select the smallest integer p � i such that

japij

sp
= max

i�k�n
jakij

and then perform the row interchange of row i and row p. This technique is called scaled
pivoting. The scale factors s1; s2; � � � ; sn are computed only once before the elimination
procedure. The additional operations required for scaled pivoting are

n(n� 1) +
n�1X
k=1

k =
3

2
n(n� 1)

comparisons, and
nX

k=2

k =
n(n+ 1)

2
� 1

divisions. The computational time to perform a comparison is about the same as an
addition/subtraction. Thus, the scaled pivoting does not add signi�cantly to the com-
putational time required to solve a system for large n.

Complete pivoting. The scaled pivoting generally gives satisfactory results. However,
since the scale factors are computed only once, there is no guarantee that the rows are
uniformly scaled at each step of the elimination. To ensure the accuracy of the solution,
the complete pivoting should be used. The complete pivoting at kth step searches all
the entries aij; i = k; k + 1; � � � ; n; j = k; k + 1; � � � ; n, to �nd the entry with the largest
magnitude. Both row and column interchanges are then performed to bring this entry
to the pivot position. The total comparisons are

nX
k=2

(k2 � 1) =
n(n� 1)(2n+ 5)

6

4. Matrix factorization (Burden & Faires, 6.5)

LU Factorization
Since the three row operations are equivalent to multiply the matrix A by three

elementary matrices, each step of the Gaussian elimination is equivalent to multiply A
by a matrix. At the �rst step we have

M (1)Ax =M (1)b

where

M (1) =

2
666666664

1 0 � � � � � � 0

�m21 1
. . .

...
... 0

. . . . . .
...

...
...

. . . . . . 0
�mn1 0 � � � 0 1

3
777777775
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with

mj1 =
a
(1)
j1

a
(1)
11

If the elimination process can be continued, we have

M (n�1)M (n�2) � � �M (1)Ax =M (n�1)M (n�2) � � �M (1)b

where

M (k) =

2
6666666666666666664

1 0 � � � � � � � � � � � � � � � 0

0
. . . . . .

...
...

. . . . . . . . . . . .
...

... 0
. . . . . .

...
...

... �mk+1;k
. . . . . .

...
...

...
... 0

. . . . . . 0
...

...
...

...
. . . . . . 0

0 � � � 0 �mnk 0 � � � 0 1

3
7777777777777777775

with

mjk =
a
(k)
jk

a
(k)
kk

The matrix
U =M (n�1)M (n�2) � � �M (1)A

is the upper triangular matrix. Let

L = (M (1))�1(M (2))�1 � � � (M (n�2))�1(M (n�1))�1

then
A = LU

L is a lower triangular matrix. Thus, we have the following theorem,

Theorem 6.17. (LU factorization) If Gaussian elimination can be performed on the
linear system Ax = b without row interchanges, then the matrix A can be factored
into the product of a lower triangular matrix L and an upper triangular matrix U , i.e.,
A = LU .

The advantage of the factorization is that we just need to factor the matrix A once,
then any system with A as the coe�cient matrix can be easily solved.

5. Stability of Gaussian elimination (Burden & Faires, 6.6)

Theorem 6.19. (Gaussian elimination) A strictly diagonally dominant matrix A

is nonsingular. Moreover, in this case, Gaussian elimination can be performed on any
linear system of the form Ax = b to obtain its unique solution without row or column

5



interchanges, and the computations will be stable with respect to the growth of round
o� errors.

Theorem 6.24. (Gaussian elimination) The symmetric matrix A is positive de�nite
if and only if Gaussian elimination without row interchanges can be performed on the
linear system Ax = b with all pivot elements positive. Moreover, in this case, the
computations are stable with respect to the growth of round o� errors.

Corollary 6.25. (LDLt factorization) The matrix A is positive de�nite if and only if
A can be factored in the form LDLt, where L is lower triangular with 1's on its diagonal
and D is a diagonal matrix with positive diagonal entries.

Corollary 6.26. (LLt factorization) The matrix A is positive de�nite if and only if
A can be factored in the form LLt, where L is lower triangular with nonzero diagonal
entries.

6. Solution of tridiagonal systems (Burden & Faires, 6.6) If

A =

2
6666666666664

a11 a12 0 � � � � � � 0

a21 a22 a23
. . .

...

0 a32 a33 a34
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . an�1;n
0 � � � � � � 0 an;n�1 ann

3
7777777777775

then the system Ax = b is called a tridiagonal system. In this case, the LU factorization
algorithm can be simpli�ed considerably. Let

L =

2
666666664

l11 0 � � � � � � 0

l21 l22
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 0

0 � � � 0 ln;n�1 lnn

3
777777775
; U =

2
666666664

1 u12 0 � � � 0

0 1
. . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . un�1;n
0 � � � � � � 0 1

3
777777775

then A = LU gives

a11 = l11

ai;i�1 = li;i�1; i = 2; 3; � � � ; n

ai;i = li;i�1ui�1;i + li;i; i = 2; 3; � � � ; n

ai;i+1 = liiui;i+1; i = 2; 3; � � � ; n� 1

All the entries of L and U can be obtained from these equations.

6



Section 2. Iterative methods

1. Vector and matrix norm (Burden & Faires, 7.1)

De�nition 7.1. (vector norm) A vector norm on Rn is a function, k�k, from Rn to
R with the following properties:

(i) kxk � 0; 8x 2 Rn

(ii) kxk = 0, if and only if x = 0

(iii) k�xk = j�jkxk; 8� 2 R and x 2 Rn

(iv) kx+ yk � kxk + kyk; 8x;y 2 Rn

The commonly used norms are the following three norms:

l1 norm

kxk1 =
nX

i=1

jxij

l2 norm

kxk2 =

 
nX

i=1

x2i

!1=2

l1 norm
kxk1 = max

1�i�n
jxij

De�nition 7.8. (matrix norm) A matrix norm on the set of all n � n matries is a
real valued function, k�k, de�ned on this set, satisfying for all n � n matries A and B

and all real numbers �:

(i) kAk � 0

(ii) kAk = 0, if and only if A = 0

(iii) k�Ak = j�jkAk

(iv) kA+Bk � kAk + kBk

(v) kABk � kAkkBk

It is easy to prove the following theorem,

Theorem 7.9. (matrix norm) For a given vector norm

kAk = max
kxk=1

kAxk

7



is a matrix norm.
Corresponding to l1, l2 and l1 vector norms, we have the matrix norms

kAk1 = max
kxk1=1

kAxk1

kAk2 = max
kxk2=1

kAxk2

kAk1 = max
kxk1=1

kAxk1

Theorem 7.11. (matrix norm) If A = (aij) is an n� n matrix, then

kAk1 = max
1�j�n

nX
i=1

jaijj

kAk1 = max
1�i�n

nX
j=1

jaijj

Theorem 7.14. (matrix norm) If A = (aij) is an n� n matrix, then

kAk2 = [�(AtA)]1=2

where �(A) is the spectral radius of A, i.e., the largest eigenvalue of A in norm:

�(A) = max j�j

2. Jacobi iteration (Burden & Faires, 7.3)
Consider the n� n liner system of equations,

a11x1 + a12x2 + � � �+ a1nxn = b1

a21x1 + a22x2 + � � �+ a2nxn = b2

� � � � � �

an1x1 + an2x2 + � � �+ annxn = bn

or Ax = b. Suppose aii 6= 0, solving for x1; x2; � � � ; xn from each equation we obtain

x1 =
1

a11
(�a12x2 � � � � � a1nxn + b1) (1)

x2 =
1

a22
(�a21x1 � � � � � a2nxn + b2) (2)

� � � � � � (3)

xn =
1

ann
(�an1x1 � � � � � an;n�1xn�1 + bn) (4)

8



Suppose an initial approximation x(0) to the solution x is given, then we can form an
iterative procedure,

x
(k)
1 =

1

a11
(�a12x

(k�1)
2 � � � � � a1nx

(k�1
n + b1)

x
(k)
2 =

1

a22
(�a21x

(k�1)
1 � � � � � a2nx

(k�1
n + b2)

� � � � � �

x(k)n =
1

ann
(�an1x

(k�1)
1 � � � � � an;n�1x

(k�1
n�1 + bn)

for k = 1; 2; � � � ;. Let A = D�L�U with D, �L and �U denoting the diagonal, lower
triangular and upper triangular parts of the matrix A,

D =

2
666664

a11 0 � � � � � � 0

0 a22
. . .

...
...

. . . . . . . . . . . .

0 � � � � � � 0 ann

3
777775

�L =

2
666664

0 � � � � � � � � � 0

�a21
. . .

...
...

. . . . . .
...

�an1 � � � � � � �an;n�1 0

3
777775 � U =

2
666664

0 �a12 � � � � � � �a1n
...

. . . . . .
...

...
. . . an�1;n

0 � � � � � � � � � 0

3
777775

Then equations (??)-(??) can be written as

x = D�1(L+ U)x+D�1b

The iterative procedure (??)-(??) can be written as

x(k) = D�1(L+ U)x(k�1) +D�1b

It is easy to see that if the iteration coverges, then the limit is the solution x.

3. Gauss-Seidel iteration (Burden & Faires, 7.3) In the Jacobi iteration, when we

compute x
(k)
i , all values x

(k)
1 ; x

(k)
2 ; � � � ; x

(k)
i�1 have been computed. Thus, we may use these

new values instead of the old values. This improvement gives the Gauss-Seidel iteration,

a11x
(k)
1 = �a12x

(k�1)
2 � a13x

(k�1)
3 � � � � � a1nx

(k�1
n + b1

a21x
(k)
1 + a22x

(k)
2 = �a23x

(k�1)
3 � � � � � a2nx

(k�1
n + b2

� � � � � �

an1x
(k)
1 + an2x

(k)
2 + � � �+ annx

(k)
n = bn

In matrix form,
(D � L)x(k) = Ux(k�1) + b

9



or
x(k) = (D � L)�1Ux(k�1) + (D � L)�1b

4. SOR iteration (Burden & Faires, 7.3) The SOR (Successive Over-Relaxation)
iteration is a further improvement on the Gauss-Seidel iteration. At each step of the
iteration, the SOR value takes the linear combination of Gauss-Seidel value and the
value from the previous iteration, i.e.,

x
(k)
i = (1� !)x

(k�1)
i +

!

aii

2
4bi � i�1X

j=1

aijx
(k)
j �

nX
j=i+1

aijx
(k�1)
j

3
5

for i = 1; 2; � � � ; n. In matrix form,

(D � !L)x(k) = [(1� !)D + !U ]x(k�1) + !b

or
x(k) = (D � !L)�1[(1� !)D + !U ]x(k�1) + !(D � !L)�1b

When 0 < ! < 1, it is called under-relaxation. When 1 < ! < 2, it is called over-
relaxation.

4. Convergence of the iterative methods (Burden & Faires, 7.3)

Theorem 7.19. (General case) For any x(0) 2 Rn, the sequence fx(k)g1k=0 de�ned by

x(k) = Tx(k�1) + c; k � 1

converges to the unique solution of x = Tx+ c if and only if �(T ) < 1.

Corollary 7.20. (General case) If kTk < 1 for any matrix norm and c is a given
vector, then the sequence fx(k)g1k=0 de�ned by

x(k) = Tx(k�1) + c; k � 1

converges, for any x(0) 2 Rn, to a vector x 2 Rn, and the following error bounds hold,

(i) x� x(k)
 � kTkk

x(0) � x


(ii) x� x(k)
 � kTkk

1� kTk

x(1) � x(0)


Theorem 7.21. (Jacobi and Gauss-Seidel) If A is strictly diagonally dominant,
then for any choice of x(0), both Jacobi and Gauss-Seidel methods converge.
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Theorem 7.24. (SOR) If aii 6= 0, for each i = 1; 2; � � � ; n, then �(T!) � j! � 1j. this
implies that the SOR method can converge only if 0 < ! < 2.

Theorem 7.25. (SOR) If A is positive de�nite and 0 < ! < 2, then the SOR method
converges for any choice of x(0).

Section 3. Error analysis and condition number

Suppose ~x is an approximation to the solution x of Ax = b. Let

r = b� A~x

If krk is small, it seems natural to say that ~x is an good approximation to x. However,
for some systems this is not true.

Theorem 7.27. (Error bounds) Suppose that ~x is an approximation to the solution
of Ax = b. A is a nonsingular matrix, and r is the residual vector for ~x. Then for any
norm

kx� ~xk � krk �
A�1

and if x 6= 0 and b 6= 0,
kx� ~xk

kxk
� kAk �

A�1 krk
kbk

De�nition 7.28. (Condition number) The condition number of the nonsigular ma-
trix A relative to a norm k�k is

K(A) = kAk �
A�1

In the real applications, the matrix A and the right hand side b are usually not exact,
but with small perturbations. So the system

Ax = b

becomes
(A+ �A)~x = b+ �b

Theorem 7.29. (Error bounds) Suppose A is nonsingular and

k�Ak <
1A�1

then
kx� ~xk

kxk
�

K(A)kAk

kAk �K(A)k�Ak

 
k�bk

kbk
+
k�Ak

kAk

!
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